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ABSTRACT 
One  of the most important parameters in population genetics is 8 = 4Nep where Ne is the effective 

population size and p is the rate of mutation per gene per  generation. We study two related problems, 
using the maximum likelihood method  and  the theory of coalescence. One problem is the potential 
improvement of accuracy in estimating the parameter 8 over  existing methods and the other is the 
estimation of parameter X which is the ratio of two 8’s. The minimum variances of estimates of the 
parameter 8 are derived under two idealized situations. These minimum variances serve as the lower 
bounds of the variances of all possible estimates of 8 in practice. We then show that Watterson’s 
estimate of 8 based on the number of segregating sites is asymptotically an optimal estimate of 8. 
However,  for  a  finite sample of sequences, substantial improvement over Watterson’s estimate is 
possible when 8 is large. The maximum likelihood estimate of X = 8,/B2 is obtained and the properties 
of the estimate are discussed. 

C ONSIDER a  gene (locus) in a  random  mating 
population of effective population size Ne. Let g 

be the mutation rate  per  gene  per  generation  at  the 
locus. As  is well known, the  parameter I3 = 4Nep plays 
a  prominent  role in the stochastic theory of population 
genetics. Therefore,  accurate estimation of this quan- 
tity is important.  A closely related  problem is the 
estimation of the  ratio, X, of two 19’s. In the case that 
the effective sizes of the two populations are the  same, 
X is the  ratio of mutation  rates.  A special  case is the 
ratio of the  rate of non-synonymous substitution and 
the  rate of synonymous substitution in a given gene. 

Using the  infinite site model (KIMURA 1969), WAT- 
TERSON (1 975)  derived  the  distribution of the  number 
of segregating sites, K ,  in a random sample of n genes 
from  a single random  mating  population. The expec- 
tation and  the variance of K are 

E ( K )  = Ban (1) 

Var(K) = Ban + 8’b, (2) 

where 
n-1 1 n-1 1 

a,= T and b,= x 3. (3) 
r=l 2 1=1 2 

TAJIMA (1983)  considered the  number (n) of nu- 
cleotide  differences between a  random  pair of genes. 
He showed that  the average, n,, of n(n - 1)/2 pair- 
wise n values has the following expectation and var- 
iance: 

E ( n n )  = 8 (4) 

Var(n,) = ___ 8 +  
n +1 2(n2 + n + 3) 

3(n -1) 9n(n - 1) 8‘. (5) 

The two statistics K/a, and nn can be used to 
estimate  the value of 13. When I.L is known, it is equiv- 
alent  to  estimating  the effective population size; and 
when Ne is known, it is equivalent to estimating  the 
mutation rate p. 

Because the variance of K/an  is smaller than  the 
variance of nn, K / a ,  (WATTERSON’S estimator) is a 
better estimator of 8 than nn. However, despite the 
importance of the issue, little improvement has been 
made  over  Watterson’s  estimator.  In  fact, it is not 
even clear  whether substantial improvement in the 
accuracy of estimation of 8 is possible. The improve- 
ment is measured in terms  of the variance of the 
estimator of 8. Under  the assumptions that sequences 
are infinitely long and  that  the scaled coalescent times 
can be estimated without error, FELSENSTEIN (1992) 
showed that  the  improvement in accuracy is not only 
possible but can be to such an  extent  that  the efficiency 
of WATTERSON’S estimator (i.e., the  ratio of the vari- 
ance of FELSENSTEIN’S hypothetic  estimator and  the 
variance of K / a , )  approaches  zero as the sample size 
becomes very large. 

Although FELSENSTEIN’S (1  992) assumptions are not 
realistic, his study raises the question of how much 
improvement  on the estimation of 8 can be made in 
practice. This is a difficult question, and so an  alter- 
native  approach is to know the largest lower bound of 
the variances of all possible estimators of 8 that can be 
achieved in practice. This can serve as a  measure of 
the closeness of a new estimator to optimality. This 
knowledge can tell us whether further efforts to im- 
prove the accuracy in estimation of 8 are worthwhile. 
The main purpose of the  paper is to provide by the 
maximum likelihood approach  a more realistic lower 

Genetics 1 3 4  I26 1 - 1270 (August, 1993) 



1262 Y.-X. Fu and W.-H Li 

bound of the variances of estimators of 13 than  that of 
FELSENSTEIN (1 992). Note that we are  not proposing 
any new practical estimator of 8 but  are only address- 
ing the issue  of  how much better  one might be  able 
to do compared to WATTERSON'S estimator.  Another 
purpose is to study the maximum likelihood estimate 
of the  ratio X of two 8's. 

JOINT DENSITY FUNCTIONS OF 
EVOLUTIONARY EVENTS 

Suppose a  random sample of n genes is taken  from 
a single random  mating  population. Under  the as- 
sumption of neutral  mutations, the process governing 
the evolution of the sequences being sampled is en- 
tirely determined by the value of 8. This process, 
which is often called the coalescence process, has been 
studied by KINGMAN (1 982), HUDSON  (1 982) and TA- 

We use the Wright-Fisher model for  the  population 
and assume no recombination  between sequences. 
Then the n-coalescent time, t,, that a sample of n 
genes were derived  from n - 1 distinct ancestors t, 
generations  ago follows the exponential  distribution. 

JIMA (1 983). 

For each sample of n genes, there is a genealogy which 
connects  the n genes to  their single common  ancestor. 
We shall assume that  the  number of mutations, K ,  in 
a  gene  for  a given time  interval of length t follows the 
Poisson distribution: 

Consider the genealogy of a random sample of n 
genes from  a single random mating  population  (e.g., 
Figure  1). There  are n - 1  internal  nodes in the  tree 
numbered  from 2 to n according to  their  order of 
occurrence in time. Therefore, between the (i - 1)th 
and  the  ith  node  there  are exactly i  branch  segments, 
labeled from 1 to i. The time  from the (i - 1)th  node 
to  the  ith  node is the coalescent time t i .  Define q g  as 
the  number of mutations  occurring in the  j th  branch 
of the  i  branch  segments  between  the  (i - 1)th  node 
and  the  ith node. 

It is reasonable to assume that  the spacial distribu- 
tion of a given number of mutations  among the sites 
of a  gene is independent of the  parameter 8, though 
the  number of mutations is dependent  on 8. For 
example, one may assume that  the spacial distribution 
is uniform  among all the sites, or any distribution  that 
does  not  contain the  parameter 8. Therefore, all rel- 

I 
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FIGURE I.-An example of genealogy of a sample of six genes. 
The number beside each node is the branching order of the  node 
and t,, i = 2, . . . , 6 are the number of generations between 
successive branching points. 

evant  information  about the value of 8 in a sample of 
n genes is contained in the vector 

O = I tm, am]: j = 1, . . . , m ;  m = 2,  . . . , n ]  

which contains (n - 1) (n + 4)/2 elements. The joint 
probability density function  (the likelihood function) 
of the quantities in 0 is 

where 
m 

a m  = C amr (9) 
i = l  

is the total number of mutations that  occurred be- 
tween the (m - 1)th  node  and  the mth node,  i.e., 
during  the m-coalescent time t,. From (8), one can 
see that  the vector ip = {tm, am; m = 2 . . . , n 1 is a 
sufficient statistic for  the  parameter 8. That is,  all 
relevant  information about  the value of 8 is contained 
in these 2(n - 1)  quantities. 

From (8), one can obtain the  joint density function 
of (a2 ,  . . . , an) by integration  over coalescent times. 
Since it is  well known that  a Poisson variable with a 
parameter  that is exponentially  distributed is equiva- 
lent to a geometrically distributed  random variable, it 
can be shown that  the  joint density function of (72 ,  

. . . , an) is 

where 



Estimation of Population Parameters 1263 

From the density function (IO) ,  one can obtain by 
convolution the density function of the total number 
of mutations in the genealogy, which is given by 

n 

7 = C 4 m -  ( 1  2 )  
m=2 

The expectation and variance of q can be  obtained 
from  the  moment  generation  function of 77 as WAT- 
TERSON (1975)  did. A simpler way to  derive  them is 
through conditional  expectations as follows: 

E ( T )  = C E ( t l m )  = C Etm(E(~mltm)) 
m m 

= C pmE(tm) 
m 

= Ban ( 1  3 )  

Var(rl) = Qr12) - E 2 ( d  

= Et2,. . .,l,(E(r121 t2, . . . 9 tn)) - 

= E [  p C(m-l)tm+p2  mt, -E2(rl) 

= Ban + 02bn. ( 1 4 )  

m i m  )I 
Define 

ow = d u n .  ( 1  5 )  

Then, iW is an unbiased estimate of 0 as can be seen 
from  Equation 13 and  the variance is, from  Equation 
14, 

Var(iW) = ( 1  + 2). ( 1  6) 
an 

Note  that if the infinite site model is assumed,  then 
OW is equivalent to  the estimator K/a , ,  because in this 
situation the total number of mutations equals to  the 
number of segregating sites in the sample of genes. 
For this reason, we shall  call the estimator iW WAT- 
TERSON'S estimator of 8. 

LOWER BOUNDS OF THE  VARIANCES OF 
ESTIMATORS OF 0 

For  subsequent discussions to be  meaningful, let us 
agree  that  the best one can do is to be  able  to  observe 
the whole process of evolution of the set of sequences 
from  the  common  ancestral  node  to  the  present. 
In this idealized situation,  one can count  not only 
the  number of mutations in each branch  (and  thus 
(q,, m = 2 , .  . . , n ] )  but also the  number of generations 
( tm,  m = 2,  . . . , n )  between successive branching 
events. An optimal estimator  of 19 with these two sets 
of data will have a smaller variance than  does any 
estimator with  less information of the process. The 
optimal estimator  can be obtained by the maximum 
likelihood method because the maximum likelihood 
estimate has the minimum variance, at least for  large 

samples, of  all  possible unbiased estimators of 6. Now 
let us study the maximum likelihood estimate of 6 
under  the most ideal situation, i.e., when all evolu- 
tionary  events are observable. 

Lower bound of the variances when all evolution- 
ary events are  observable: The proper likelihood 
function under this assumption is given by (8). The 
log-likelihood function is therefore 

n 1 n  

= c - ( n  - 1)logB + (7  + n - 1)Iogp 

P n  n 

- p mt, - - m(m - I)tm (17)  
m=2 e m = 2  

where c is not  a  function of 4Ne or p. From the log- 
likelihood function, we obtain  the first order deriva- 
tives: 

dlogL n - 1 p " 

dlogL 7 ] + n - 1  " 1 "  
dP I.L m=2 B m=2 

" --- 
dB 8 6 m=2 

+< m(m-   l ) tm  

" - - mtm--  m(m- l ) tm.   (19)  

Equating these two derivatives to zero and solving the 
equations  for 8 and p,  we obtain  the maximum likeli- 
hood estimates of B and 1.1 as 

where the  subscriptfof 8 means that  the estimation is 
made using the full  information. T o  obtain  the vari- 
ance of the estimate, we need  the second order deriv- 
atives. From (18)  and (19) ,  we have 

Fisher's  information  matrix is therefore given by 
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- " ' n  - 1 n - 1  
8* OP 

n - 1  B a n + n - l  
" 

dCL P2 

The inverse of the  information  matrix can be easily 
obtained  and  from the inverse matrix,  the asymptotic 
variance of ifand /. are  found  to be 

Var(i) = - . P 

an0 

Note  that if p is known,  then  from ( 2 1 ) ,  the variance 
of the  estimate of 0 will be 

f12 

n - 1 '  
=- 

Comparing this variance with (23), one can see that 
the first term, elan, in (23) is due  to  the estimation of 
CL. 

Lower  bound of the  variances  when only the  mu- 
tational  events  are  observable: Before discussing the 
implications of the results above, let us consider  a less 
ideal situation in  which the  person, who can follow 
the course of evolution, observes (or scores) only the 
number of mutations in each branch of the genealogy 
between successive branching events. That is, he has 
information  on {qm,  m = 2 ,  . . . , n)  but does  not know 
the values  of { t m ,  m = 2,  . . . , n) .  Let us see what his 
best estimator is. 

The proper likelihood function is given by ( 1  0) and 
thus  the log-likelihood function is 

n 

1 = log L = 2 1 q m  IOgPm - ( q m  + l)log(Pm + 1)1. 
m = 2  

From this, it is easy to show 

Therefore,  the maximum likelihood estimate of I9 is 
the solution of the  equation 

This estimator will be denoted by 5,. To calculate the 
variance of Om, note  that 

m=2 ( e  + m - 1)' 

a n  1 -" - 
8 m=2 ( m  - l)(O + m - 1) ' 

The large sample variance of im is therefore 

Var(0,) = 1/E - 7 ( ::) 

an 1 - a  

where 

Implications: We have established two lower bounds 
of the variances of estimators of 8. As noted  earlier, 
the variance of the best practical estimator can not  be 
smaller than  Var(if) given by (23). In the real world 
we have far less information  than  that used to  derive 
( 2 3 ) .  Given a set of  DNA sequences, one can at best 
reconstruct  their genealogy without error, which in- 
cludes the topology of the  tree  and  the  number of 
mutations in each branch. All other quantities such as 
ism, m = 2 ,  . . . , n )  and Itm,  m = 2, . . . , n )  have to be 
estimated  from  the  reconstructed genealogy. It should 
be emphasized that  the  information  provided in the 
derivation of Var(im) is actually more  than  that  a 
perfectly reconstructed genealogy can provic!e. 
Therefore, we conclude that  the variance of  Var(I9,) 
given by (28) is a lower bound of the variance of all 
possible estimators in practice.  Note  that when the 
number of genes in the sample is two (n = 2), all the 
estimators  considered here, including TAJIMA'S esti- 
mator,  are identical and so are  their variances. 

Since 1/K > 1/(k + l ) ,  k = 1,  . . . , Chebyshev's 
inequality ensures  that 

a, s (n - 1)L. 2 

It can further be shown that 

Ban a dbn 
n - 1  1 - a  a, 

Therefore,  from (14), (23) and (28), we have, as 
expected,  that 

Var(if) < var(i,) < var(i,) 

s- Q - .  

We have considered here  the estimates of I9 for  a 
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given locus. The parameter  that is of most biological 
interest is the 8 value per site,  that is, 8* = B/L, where 
L is the length of the sequences (number of nucleo- 
tides in a  sequence).  Corresponding to  the  three esti- 
mates if, 6,  and 8, of 8, the estimates of 8* are 
respectively 5; = $f/L, $, = $,/L and 6: = 6,/L. It  
follows from (14), (23)  and  (28)  that 

One can consider the  ratio of the variances of two 
estimates of 8 or 8" (asymptotic relative efficiency) by 
letting the sample size n or  the sequence  length L or 
both  approach infinity. For  example, we have 

var(i,>  Var(&) 
n- Var(8,) n - m  Var(8,) 
lim - = lim - 

1 +- $an 
- .  

n - 1  
= lim = 1. (32) 

n-m 1 +-  8bn 
an 

This means that  for finite  sequences WATTERSON'S 
estimatorA&,, of 8 has asymptotically the same variance 
as Ofand 8,. In other words, WATTERSON'S estimator 
of 8 is asymptotically optimal and thus  the single value 
of 9 asymptotically contains all the information  about 
the value of 8. 

Consider the same ratio  but let the sequence  length 
L instead of the sample size n approach infinity. If we 
assume that  the 8 has a  finite limit 8, when L approach 
infinity (a common  assumption for many study in 
population genetics). Then 

1 +- Oman 

lim  lim ~ - n -  1 
- lim = 1.  (33) 

n- L- Var(8:) n- 8,bn 1 +-- 
Var(i9; ) 

an 

However, if 8, = CQ (that is, 8* has a  constant  value), 
then  the  above limiting process becomes 

an 

an 

The last result was obtained  earlier by FEUENSTEIN 
(1992). On the  other  hand, if one let the sample size 
approach infinity first,  then 

Var(& ) 
lirn lim ~ - 
L- n- Var(ij:) 

- 1. 

This is true whether or not 8, is finite. Since sequence 
length is finite and so is the value of 8 in practice, the 
efficiency of WATTERSON'S  estimator of 8 will increase 
when sample size is sufficiently large. 

Potential improvement: We have established two 
lower bounds of the variances of all  possible estimators 
of 8 or 8". However, because the variances of the two 
estimators and I?,, given by (23)  and  (28), respec- 
tively, are large sample variances, it is not  apparent as 
to how different  these variances can be when the 
sample size is small. T o  answer this question, com- 
puter simulations were conducted. Simulation results 
suggest that these  large sample variance approxima- 
tions are in fact very accurate  for small samples as 
well. Two examples are given in Figure 2, one  for 8 
= 3 and  the  other  for 8 = 10. In Figure 2, a and b, 
the variances calculated from  simulated samples for 
WATTERSON'S and TAJIMA'S estimates of 6' are also 
plotted  for  comparison,  though  their exact sample 
variances are known. 

It  should  be emphasized that  although it has been 
shown above  that WATTERSON'S estimates of 8 or 8* 
are asymptotically efficient for finite sequences, sub- 
stantial improvement in the accuracy of estimate of 8 
or 8" may be possible because the efficiency of  WAT- 
TERSON'S estimator  approach one  at a very slow rate. 
This can be seen from  Figure 3. In  Figure  3, we plot 
the efficiency of WATTERSON'S estimator 8, relative to 
the estimator Gm for  a  number of values of 8 against 
the  number of sequences in the sample. As one can 
see,  the  common  feature of these efficiency curves is 
that  the efficiency decreases for each fixed value of 8 
relatively fast  with the  number of sequences in the 
sample to a  stable level. The smaller the 19 is, the fast 
this stable level is reached. With even the considerably 
large sample of 500 sequences, there is still no sign of 
increase in efficiency of WATTERSON'S estimator. 
From this perspective,  the asymptotic efficiency of 
WATTERSON'S estimator is of little practical impor- 
tance. The extent  to which the improvement can be 
made  depends on the value of &the  larger  the value 
of 8, the higher the potential  improvement. When 8 
= 20 and with 30 or more sequences, the variance of 
the best estimator of 8 can be only  half of the variance 
of WATTERSON'S estimator of 8. This will be indeed  a 
substantial improvement if such an  estimator can be 
found. 

Now if only the total number of mutations in the 
genealogy of a sampled of n genes is known, can on_e 
improve the estimation of 8 over  the  estimator 8, 
without trying to recover the mutational  events { q , )  
and coalescent events ( t m ] ?  The answer is no! This is 
because in this situation the best one can do is replace 
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FIGURE 3.-Efficiency  of WAITERSON'S estimate 6, of 8 relative 
to 8,. The six curves from top to bottom correspond respectively 
to 8-= 1 ,  2,A 5, 10, 20 and 50. The efficiency is calculated by 
Var(O,)/Var(8,) where Var(8,) and Var(8,) are given by (14) and 
(28), respectively. 

0 20 40 60 EO 100 

Number of genes 

FIGURE 2.-Variances  of estimates of 8. The  four solid curves 
from top to bottom are  the theoretical variances of TAJIMA'S 
estimate 11.. WATTERSON'S estimate b, and the maximum likelihood 
estimates bm and e,, respectively. The dashed curve is the variance 
given by (25). The points for each sample size (number of genes) 
are the variances from 5000 simulated samples. Notations: open 
Giamond, TAJIMA'S estimate; solid diamond, WATTERSON'S estimate 
8,; open circle, the maximum likelihoo? estimate b,; and solid 
circle, the maximum likelihood estimate 0,. (a) 8 = 3.0 and (b) 8 = 
10.0. 

the values of evolutionary  events by their  expected 
values conditional on  the value of q .  Note  that 

Substituting tm in (22) by E ( t m ) ,  we have 

and so 8f = 6,. Substituting 7, in the left hand side of 
(27) with the unconditional  expectation E(qm), we 
have 

c O/(m-  1 ) +  1 - - an 
m=2 B + m - 1  

and so gm = 8,. Finally, if one substitutes q, in the left 
hand side of (27) with the  conditional  expectation 
E(qml q ) ,  the resulting  estimate Gm can be shown nu- 
merically to  be almost identical to $,, whatever the 
value of O is. Therefore, in the absence of knowledge 
about  the mutational  events { 7,) and coalescent times 
( tm),  8, is the best estimate.  Of  course,  a  better  estimate 
may be  obtained if one has some knowledge about 
either { q m )  or ( t m ] .  

ESTIMATION OF X 

We now consider the situation in  which the sites of 
the genes are classified into two classes. Again, it is 
assumed that  there is no recombination. The simplest 
case of such a  situation is to divide a  sequence  into 
two adjacent  segments, likely  with different  lengths 
and  mutation rates. Another case is that  the sequence 
is a  protein  coding  region. The need to consider two 
types of site is obvious because synonymous substitu- 
tions  occur  more  frequently  than nonsynonymous 
ones. Estimation of the  ratio of two 0's serves two 
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purposes. First, the  ratio of the two 8's may be of 
interest.  Second, knowledge of the  ratio can be used 
to improve the estimation of one of the two 0's. The 
latter will be  illustrated  later. 

Without loss of generality,  suppose  that  a  sequence 
is divided  into two segments with mutation  rates 
and p2, respectively. Let p = p1 + p2, X = 81/82 and 
8 = 81 + 02. Then, we have 

8X 8 
81 =- and 8 2 = -  

1 + X  1 + X '  (34) 

Since we assume that  there is no recombination, the 
two segments have the same genealogy. Let n,, whose 
meaning is the same  as  before,  be  defined for  the first 
segment and 3;n be the  corresponding variable for  the 
second  segment. Then  the  joint probability density 
function is 

where K~ = v,,, + ern. The marginal  distribution of 
mutational  events is therefore  the  joint distribution. 

( " X )*( i f n  Km! ( )( r. (36) 1 + X  1 + X  m vm!lm! pm+ 1 pm+ 1 
" - 

The log-likelihood of either of these two likelihood 
functions can be  written as 

I = logl, = c + 9logX - (9  + {)log(l + X) (37) 

where c is a  constant  independent of X. Therefore  the 
maximum likelihood estimate of X from  either of the 
two density functions is easily found  to  be 

i = q / { .  (38) 

The maximum likelihood estimate of 8 can  be ob- 
tained  from the formulas in the previous section by 
combining the two segments  into  a single one. For 
example, 8, = ( 9  + {)/an. Note  that i is not  defined if 

is equal to zero. Although  the  property of the 
maximum likelihood method  ensures  that i is asymp- 
totically unbiased, the speed of approaching  the  true 
value of X requires special attention. Using Taylor's 
expansion, one can show that 

where the covariance of 9 and { is 

Therefore, 

It follows that  the bias of estimation approaches  zero 
at  the same speed as l/E({) = l/(02an). Increasing  the 
sample size does  not  help very much because a, in- 
creases slowly. A  correction of the bias  in estimation 
should  be done in practice. From (41), an obvious 
correction is 

-- 9 - 
{+ 1 

Note  that i is fully defined. Simulation (Table 1 )  
shows that i gives quite  reasonable  results, particularly 
when 8 is not  too small. When 8 and  the  number of 
genes in the sample are  both small, i tends to  under- 
estimate X. The following estimator seems to be 
slightly better  than i (Table 1) 

{+ 1 - A  
n 

To calculate the variance of X, note  that since 

lim X = lim i' = lim i, 

its asymetotic variance is equal to  the asymptotic var- 
iance of X, which is 1/E(-d21/dh2).  From (37), it  follows 
that 

n- n - m  n - m  

81 8 - and 
X2 (1  + X y -  X ( 1  +X)' 

Therefore,  the large sample variance of is 

This variance is in fact the lower bound of the variance 
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TABLE 1 

Estimates of X from Equation 42 

x = 0.2 X = 0.5 

n Q = 1.0 q5 = 2.0 Q = 4.0 @ = 10.0 Q = 1.0 Q = 2.0 6 = 4.0 Q = 10.0 

5 0.149 0.184 0.194 0.199 0.341 0.429 0.473 0.497 
(0.170) (0.201) (0.204) (0.203) (0.396) (0.477) (0.502) (0.509) 

10 0.177 0.196 0.200 0.199 0.409 0.477 0.494 0.497 
(0.187) (0.202) (0.203) (0.200) (0.435) (0.496) (0.504) (0.500) 

15 0.181 0.196 0.199 0.200 0.427 0.48 1 0.497 0.501 
(0.187) (0.200) (0.201) (0.201) (0.444) (0.492) (0.502) (0.503) 

30  0.193 0.198 0.198 0.199 0.453 0.484 0.500 0.499 
(0.196) (0.200) (0.199) (0.199) (0.460) (0.488) (0.502) (0.500) 

40 0.193 0.200 0.202 0.199 0.457 0.503 0.497 0.498 
(0.195) (0.201) (0.203) (0.199) (0.463) (0.506) (0.498) (0.498) 

50 0.192 0.200 0.199 0.201 0.467 0.494 0.499 0.498 
(0.193) (0.200) (0.200) (0.201) (0.472) (0.496) (0.500) (0.499) 

100  0.196 0.199 0.198 0.198 0.480 0.497 0.500 0.499 
(0.197) (0.199) (0.198) (0.1 98) (0.482) (0.498) (0.501) (0.499) 

Each entry in the  table is the  average  from 10,000 simulations. The  numbers in parenthesis are  the  estimates  from  Equation 43. 

of  all  possible estimators of X. Therefore,  for small 
samples, the actual variance of i is expected  to  be 
larger  than (44). In order  to estimate the variance, 
the values of 8 and X in (44) have to  be substituted 
with their estimates. In  doing so, the estimated vari- 
ance  tends to be  an  overestimate, because it is the 
ratio of two non-negative random variables. There- 
fore, it is not  straightforward  to  obtain  a reliable 
estimate of the small sample variance of i. Neverthe- 
less, the variance may be  approximated by the follow- 
ing modification 

X( 1 + X)Z 
a,e + cn 

where c, is the  correction  factor. We found by simu- 
lation that c, should always be positive, implying that 
the inflation of estimation due  to  the  ratio of two 
random variables does  not  entirely  compensate the 
difference between small sample and asymptotic vari- 
ances. Furthermore, we found  that by choosing 
c, = a,, the estimated variance is reasonably accurate. 
We therefore suggest that  for small samples (n < 50) 
the following formula  be used to calculate the variance 
of x. 

i( 1 + x)' 
var(i() = - (45) 

The variance of i should  be  computed by replacing 
in (45) with i(* 
A computationally intensive method can be used to 

derive  more  accurate estimates of the variances for 
small samples. Since the variance of the estimate  de- 
pends on only the sample size n and  the values of X 
and 0, once  the estimates of the two parameters, X and 
8, are  obtained,  one can simulate a  large number of 
samples of  size n according to  the distribution (6) and 

a,O+a, . 
* 

(7) using the estimated values of X and 8. Let Xi be the 
estimate of X based on  the  i-th simulated sample and 
S be  the  number of samples simulated. Then  the 
variance of the estimate of X is estimated by the sample 
variance of X(s. That is, 

l S  
var( i )  = - (xi - X)'. s - 1 i=l 

This is the so-called parametric  bootstrap variance 
estimate. 

Let us now see how a knowledge of X can help 
improve the estimate of the 6' in a  segment by incor- 
porating  information  from the  other segment. Sup- 
pose we are interested in the value of O1 but  the value 
of X is known or can be assumed to be  approximately 
the  ratio of the two segment  lengths. Two estimates 
are possible. One is to estimate O1 as if we do not have 
any other information. The other  one is first to esti- 
mate 8 and  then use 81 = 8 X / ( l  + X) to  obtain the 
estimate of d l .  The ratio of the variance of the  latter 
estimate to  that of the  former is 

olbn + X  

l + X  
"- X ( 1 + O b , )  1 +&bn - 
I + X  1 + e l b n  

c 1. 

We can see that using full information can always 
improve the accuracy of estimation. The gain is par- 
ticularly substantial when 81 << 1 and X << 1. For 
example, when 81 = 0.1, X = 0.3 and n = 5, the  ratio 
of variances is 0.33. That is, the variance of the 
estimate using all the information is only 1/3 of  the 
variance which does  not use the knowledge about X. 
In practice, of course,  the value of X will not  be known 
exactly, but  the  estimate of X can be  extended with 
little difficulty to  more complex situations. Since X 
does  not  depend on population size and is insensitive 
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TABLE 2 

& defined by Equation 46 

n q = 0.05 q = 10-2 q = 10-9 q = 10” = 10-5 

2  40.000 90.5 12 310.127 990.501 3  150.728 
3  10.837 30.713 90.033 200.560 450.423 
4  0.9 15 10.861 40.235 80.562 160.318 
5  0.399 0.922 20.235 40.469 80.100 
6  0.126 0.381 10.140 20.461 40.529 
7  0.261 X 10” 0.107 0.486 10.285 20.573 
8  0.393 X lo-* 0.189 x 10”’ 0.140 0.560 10.366 
9  0.495 X lo-’ 0.246 X 10“ 0.233 X 10” 0.162 0.600 

10 0.551 x 1 0 - ~  0.275 X IO-’ 0.273 X IO-’ 0.256 X 10” 0.173 

to change in mutation  rate as long as and ~2 are 
changed  at  about  the  same  rate, it can be  expected to 
be relatively stable across species. Therefore,  the es- 
timation of X can be done with high precision when 
multiple species data  are available. Improving the 
accuracy of estimating X is thus  an efficient way to 
improve the accuracy of the estimation of 8’s. 

DISCUSSION 

The estimation of 8 in the special case that  the 
observed K is 0 is worth of further discussion. In this 
case, both WATTERSON’S estimate and TAJIMA’S esti- 
mate of 8 are zero and so are  the variances. This is 
not  reasonable. I t  is more  informative in this situation 
to give an  interval  estimate of 8. WATTERSON (1975) 
found  that 

From this equation,  one can find the minimum value 
8, of 8 such that 

Pr(K=OIB, )Sq .  (46) 

The interval  estimate of 8 is then (0, 8,). Table 2 gives 
the 8,’s for q = 0.05, lo-‘, and If 
q = 0.05,  for example, then 8, = 0.399  for n = 5 and 
8, - 0.021 for n = 10. 

J. FELSENSTEIN and R. HUDSON (personal  commu- 
nication) suggested to consider p = 8,/(O1 + 8,) instead 
of X = 01/02. The mathematics  dealing with p is rather 
simple because the  random variable 7 given the value 
of 7 + {follows a binomial distribution with parameter 
81/(81 + 8,). Therefore 1 = v/(s + {) is an unbiased 
estimator of p and  Var($) = p (  1 - p ) / ( v  + {). 

Recall that dl  and 8 2  are defined  for  the whole 
segments. These two segments may have different 
number of sites. Therefore, it would be more  appro- 
priate  to  compare  the  mutation  rates of the two seg- 
ments  on the  per site basis. T o  achieve this, only a 
minor  change is required. Let the  ratio of the  number 
of sites of the first segment to  that of the second 
segment  be p .  Then  the X per site is simply 

In  the estimation of X, we have assumed up  to now 
that  the two segments in consideration are completely 
linked. If this is not the case, the genealogy of the two 
segments may be  different. For the  extreme case  in 
which the two segments are unlinked (i.e., the recom- 
bination rate equals 0.5),  the two genealogies are 
independent. In general, let the coalescent times for 
the  segments be ( tm) and ( t ; ] ,  respectively, and  their 
joint density function  be h( tm;  t i ,  m = 2, . . . , n). Then 
the overall joint density function is 

which can be  rewritten as 

From this, it  follows that  the maximum likelihood 
estimate is the solution of the equation: 

dlogL { v +  { 1 - +- x m ( t k  - tm) = 0. 
dX X 1 + X  (1+X)2 ,  

In the  absence of information about  the values of tm 
and t: (m = 2, . . . , n), the best one can do is to 
replace  them by their  expected values. This will then 
lead to  the maximum likelihood estimate = 7/{. 
Again bias correction  should be done.  It is easy to see 
that  the  large sample variance of the maximum like- 
lihood estimate of X is also given by (44), provided 
that E(t,,,) = E(t : ) .  This is true if the sequences in the 
sample are randomly  chosen. The case where  the two 
segments are completely linked corresponds to 
t m = t : , m = 2 , .  . . ,n. 

Although we derived lower bounds of the variances 
for  the  estimator of 8, it is not clear so far  on how 
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close the varjance of a practical estimator to  the lower 
bound Var(8,) can be.  However, we believe that an 
accurate  reconstruction of gene genealogy will even- 
tually lead to  an  estimator of 8 with a variance close 
to the lower bound, because the  number of mutations 
on each branch and  the  branching  order of the nodes 
should provide almost as much information as the 
values of {v,, m = 1 ,  . . .). Such an  estimator may 
perhaps be developed along the line of work by STRO- 
BECK (1983), ETHIER and GRIFFITH (1987)  and GRIF- 
FITH (1 989). In particular, if the probability distribu- 
tion of samples computed i n  GRIFFITH (1989) is 
adapted  for  estimating 8, we expect  that  the varipce 
of the estimate be close to  the lower bound Var(0,). 
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